膜片传感器的结构分析
文章出处:诺和环保 人气:-发表时间:2023-10-07 08:38
膜片传感器的结构分析
压力传感器由波纹膜片、玻璃圆环、光纤法兰盘和光纤插头等构成,其中d波纹膜片即为压力敏感膜。1)将波纹膜片与玻璃圆环的一个端面粘合,使波纹膜片的同心圆圆心与玻璃圆环的圆心重合;2)将玻璃圆环另一端的外壁与光纤法兰盘的凹槽粘结并将外部封装固化;3)将光纤插头旋接于光纤法兰盘,即构成一个压力传感器。光纤插头的端面与波纹膜片的下表面形成法布里-珀罗(F-P)腔。光经光纤垂直入射,一部分被光纤端面反射,另一部分光经过空气腔,被波纹膜片下表面反射,2束光在光纤内部发生干涉。当外界压力发生变化,波纹膜片将发生形变,从而改变 F-P腔的腔长,引起反射谱的相位移动。对反射光谱进行解调,可以得到腔长的大小,从而计算得出作用于波纹膜片上的压力。
传感器在不同压力下的模态分析
设置波纹膜片的参数:工作半径为4600μm,厚度为30μm,波高为60μm,波纹宽度为750μm,杨氏模量为200GPa,泊松比为0.3,材料为316L不锈钢。
仿真计算波纹宽度为500、600、750、1000μm时挠度随压力的变化曲线。在同等压力下,波纹宽度越大,挠度越大。当波纹宽度高于750μm时,压力-挠度曲线的线性度变差。为了得到挠度变化较大且线性度较好的值,选择波纹宽度为750μm的波纹膜片。
仿真计算波高为10~90μm时挠度的变化情况。当波高为30~80μm时,挠度有较高的变化量,在挠度相同、线性度近似的情况下,综合考虑波纹膜片的加工成本,选择波纹高度为60μm的波纹膜片。
利用 CoventorWare 软件进行仿真,设置敏感膜的厚度为30μm,波高为60μm,波纹宽度为750μm。在敏感膜上施加0.1MPa的压力,波纹膜挠度为55μm。
传感器压力测试系统
光纤传感分析仪采用光纤传感分析仪Si720。Si720的光源与探测系统是各自独立的,且具有2个通道,每个通道可以检测100个传感器,全部传感器以5Hz同步扫描,波长分辨率为0.25pm,精度为±1pm。2个通道采用高功率扫描激光器作为光源,输出波长为1510~1590nm,光源输出的光通过一个2×2光纤耦合器被分成强度相等的2束光。一束光被接回到CH2检测通道,作为入射参考光;另一束光传输经过F-P微腔形成干涉信号,再通过光纤耦合器接回到CH1检测通道,作为反射测量光;2束光同时进行扫描并传入计算机。由于波纹膜挠度和压力呈线性关系,因此压力的大小可由对应腔长的变化量来确定。
用YS-2.5型活塞压力计对传感器从0~0.1MPa进行均匀升压,每隔0.01MPa标定一次,25 ℃时,微压传感器的初始腔长为137.11μm,腔长总变化量为51.8μm,并用LabView软件仿真得到传感器的腔长随压力变化曲线 ,Matlab计算得到的腔长拟合方程为L=518.0188P+137.1081,均方根误差为0.9991,传感器精度为1.05%F、S、(F、S、 表示全量程范围),灵敏度为51802μm/MPa,与仿真结果一致。
迟滞性是反映传感器在正反行程过程中输出-输入曲线的不重合程度的指标。先对压力传感器从0均匀升压至 0.1MPa,再均匀降压至0,可以看出传感器升降压曲线几乎重合,计算得到相对迟滞误差为0.4%,迟滞效应很弱。
压力传感器由波纹膜片、玻璃圆环、光纤法兰盘和光纤插头等构成,其中d波纹膜片即为压力敏感膜。1)将波纹膜片与玻璃圆环的一个端面粘合,使波纹膜片的同心圆圆心与玻璃圆环的圆心重合;2)将玻璃圆环另一端的外壁与光纤法兰盘的凹槽粘结并将外部封装固化;3)将光纤插头旋接于光纤法兰盘,即构成一个压力传感器。光纤插头的端面与波纹膜片的下表面形成法布里-珀罗(F-P)腔。光经光纤垂直入射,一部分被光纤端面反射,另一部分光经过空气腔,被波纹膜片下表面反射,2束光在光纤内部发生干涉。当外界压力发生变化,波纹膜片将发生形变,从而改变 F-P腔的腔长,引起反射谱的相位移动。对反射光谱进行解调,可以得到腔长的大小,从而计算得出作用于波纹膜片上的压力。
传感器在不同压力下的模态分析
设置波纹膜片的参数:工作半径为4600μm,厚度为30μm,波高为60μm,波纹宽度为750μm,杨氏模量为200GPa,泊松比为0.3,材料为316L不锈钢。
仿真计算波纹宽度为500、600、750、1000μm时挠度随压力的变化曲线。在同等压力下,波纹宽度越大,挠度越大。当波纹宽度高于750μm时,压力-挠度曲线的线性度变差。为了得到挠度变化较大且线性度较好的值,选择波纹宽度为750μm的波纹膜片。
仿真计算波高为10~90μm时挠度的变化情况。当波高为30~80μm时,挠度有较高的变化量,在挠度相同、线性度近似的情况下,综合考虑波纹膜片的加工成本,选择波纹高度为60μm的波纹膜片。
利用 CoventorWare 软件进行仿真,设置敏感膜的厚度为30μm,波高为60μm,波纹宽度为750μm。在敏感膜上施加0.1MPa的压力,波纹膜挠度为55μm。
传感器压力测试系统
光纤传感分析仪采用光纤传感分析仪Si720。Si720的光源与探测系统是各自独立的,且具有2个通道,每个通道可以检测100个传感器,全部传感器以5Hz同步扫描,波长分辨率为0.25pm,精度为±1pm。2个通道采用高功率扫描激光器作为光源,输出波长为1510~1590nm,光源输出的光通过一个2×2光纤耦合器被分成强度相等的2束光。一束光被接回到CH2检测通道,作为入射参考光;另一束光传输经过F-P微腔形成干涉信号,再通过光纤耦合器接回到CH1检测通道,作为反射测量光;2束光同时进行扫描并传入计算机。由于波纹膜挠度和压力呈线性关系,因此压力的大小可由对应腔长的变化量来确定。
用YS-2.5型活塞压力计对传感器从0~0.1MPa进行均匀升压,每隔0.01MPa标定一次,25 ℃时,微压传感器的初始腔长为137.11μm,腔长总变化量为51.8μm,并用LabView软件仿真得到传感器的腔长随压力变化曲线 ,Matlab计算得到的腔长拟合方程为L=518.0188P+137.1081,均方根误差为0.9991,传感器精度为1.05%F、S、(F、S、 表示全量程范围),灵敏度为51802μm/MPa,与仿真结果一致。
迟滞性是反映传感器在正反行程过程中输出-输入曲线的不重合程度的指标。先对压力传感器从0均匀升压至 0.1MPa,再均匀降压至0,可以看出传感器升降压曲线几乎重合,计算得到相对迟滞误差为0.4%,迟滞效应很弱。
下一篇:什么是催化燃烧 上一篇:粉尘加湿机的工作原理和使用步骤



